

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International Advanced Level In Further Pure Mathematics F3 (WFM03) Paper 01

Question Number	Scheme	Notes	Marks
1(a)	$(\cosh A \cosh B + \sinh A \sinh B =) \left(\frac{e^A + e^{-A}}{2}\right) \left(\frac{e^B + e^{-B}}{2}\right) + \left(\frac{e^A - e^{-A}}{2}\right) \left(\frac{e^B - e^{-B}}{2}\right)$ $= \frac{e^{A+B} + e^{A-B} + e^{B-A} + e^{-A-B} + e^{A+B} - e^{A-B} - e^{B-A} + e^{-A-B}}{4}$ Expresses the lhs in terms of exponentials correctly, combines terms and combines fractions with common denominator (Brackets not needed due to fraction lines)		M1
	$= \frac{2e^{A+B} + 2e^{-(A+B)}}{4} = \frac{e^{A+B}}{4}$ Fully correct pro-	$\frac{+e^{-(A+B)}}{2} = \cosh(A+B)^*$ of with no errors	A1*
(b)	1 (1 2)		(2)
(b)	$= \left(\frac{2 + \frac{1}{2}}{2}\right) \cosh x$ Applies the result from part (a) and e	$\sinh(\ln 2) + \sinh x \sinh(\ln 2)$ $x + \left(\frac{2 - \frac{1}{2}}{2}\right) \sinh x$ Evaluates both $\cosh(\ln 2)$ and $\sinh(\ln 2)$ must be seen	M1
	$\frac{5}{4}\cosh x + \frac{3}{4}\sinh x = 5\sinh x$ $\Rightarrow \frac{5}{4}\cosh x = \frac{17}{4}\sinh x$	Collects terms and reaches $a \cosh x = b \sinh x$ oe Depends on the first M mark	dM1
	$5\cosh x = 17\sinh x$ oe	Correct equation	A1
	$x = \frac{1}{2} \ln \left(\frac{1 + \frac{5}{17}}{1 - \frac{5}{17}} \right)$ Or $\frac{e^{2x} - 1}{e^{2x} + 1} = \frac{5}{17} \Longrightarrow x = \dots$	Moves to tanh x and uses the correct logarithmic form for artanhx or reverts to exponential forms and solves for x Depends on both M marks	ddM1
	$x = \frac{1}{2} \ln \left(\frac{11}{6} \right)$	Cao (Accept integer multiples of $\frac{11}{6}$)	A1
			(5) Total 7
			Total /

Way 2			
(b)	$\cosh(x + \ln 2) = \cosh x \cos x$	$\sinh(\ln 2) + \sinh x \sinh(\ln 2)$	
	$= \left(\frac{2 + \frac{1}{2}}{2}\right) \cosh x + \left(\frac{2 - \frac{1}{2}}{2}\right) \sinh x$		
	Applies the result from part (a) and evaluates both cosh(ln2) and sinh(ln2)		
	Use of (a) must be seen $\Rightarrow 5 \cosh x = 17 \sinh x$		
	\Rightarrow 3 cosn x dM1: Collects terms and reaches an equati		dM1A1
	A1: Correct equation		
	$5\left(\frac{\mathrm{e}^x + \mathrm{e}^{-x}}{2}\right) = 17\left(\frac{\mathrm{e}^x - \mathrm{e}^{-x}}{2}\right)$		
	$12e^{x} = 22e^{-x} \Rightarrow e^{2x} = \frac{22}{6} \Rightarrow x = \dots$	Changes to exponentials (correct forms) And solves for <i>x</i>	ddM1
	$x = \frac{1}{2} \ln \left(\frac{11}{6} \right)$	Cao (Accept integer multiples of $\frac{11}{6}$)	A1
Way 3			
	$\cosh(x + \ln 2) = \cosh x \cosh(\ln 2) + \sinh x \sinh(\ln 2)$		
	$\left(\frac{e^x + e^{-x}}{2}\right)\left(\frac{e^{\ln 2} + e^{-\ln 2}}{2}\right) + \left(\frac{e^x - e^{-\ln 2}}{2}\right)$	$\left(\frac{e^{-x}}{2}\right) \left(\frac{e^{\ln 2} - e^{-\ln 2}}{2}\right) = 5 \left(\frac{e^{x} - e^{-x}}{2}\right)$	M1
		the exponential forms of the hyperbolic	
	funct Use of (a) n	nons. Tons be seen	
	eg $5e^x + 5e^{-x} = 17e^x - 17e^{-x}$ oe	Evaluates e ^{ln2} and e ^{-ln2} and starts to collect terms	dM1
	$12e^{2x} = 22 \Longrightarrow e^{2x} = \frac{11}{6}$	Correct value for e^{2x}	A1
	x =	Solves for x	ddM1
	$x = \dots$ $x = \frac{1}{2} \ln \left(\frac{11}{6} \right)$	Cao (Accept integer multiples of $\frac{11}{6}$)	A1

NB: Squaring and obtaining a value for sinh*x* **or cosh***x* introduces extra answers. If these extra answers are then eliminated M1A1 is available but if no attempt at elimination is made award M0A0

Question Number	Scheme	Notes	Marks
	Throughout both parts of this question do not	penalise omission of dx or $d\theta$	
2(i)	$5+4x-x^2=9-(x-2)^2$ oe	Correct completion of the square Any correct result	B1
	$\int \frac{1}{\sqrt{5+4x-x^2}} \mathrm{d}x = \int \frac{1}{\sqrt{9-(x-x^2)^2}} \mathrm{d}x$,	M1A1
	M1: Obtains ks		
	A1: Correct integration	(+ c not needed)	(3)
(ii)	$x = 6 \Rightarrow \theta = \frac{\pi}{3}$ $x = 2\sqrt{3} \Rightarrow \theta = \frac{\pi}{6}$	Correct θ limits in radians	B1
	$\int \frac{18}{(x^2 - 9)^{\frac{3}{2}}} dx = \int \frac{1}{(3\sec \theta)^2 - 9}$ M1: For $\int \frac{18}{((3\sec \theta)^2 - 9)^2} dx = \int \frac{1}{(3\sec \theta)^2 - 9} dx = \int \frac{1}{(3e^2 - 9)^2 - 9} dx $	M1	
	$\int \frac{54 \sec \theta \tan \theta}{(9 \sec^2 \theta - 9)^{\frac{3}{2}}} d\theta = 54 \int \frac{\sec \theta \tan \theta}{27 \tan^2 \theta}$ $2 \int \frac{\cos \theta}{\sin^2 \theta} d\theta = 6$	$\frac{\sin \theta}{\sin^3 \theta} d\theta = 2 \int \frac{\sin \theta \cos^3 \theta}{\cos^2 \theta \sin^3 \theta} d\theta$	A1
	Correct simplifie	J	
	$2\int \frac{\cos\theta}{\sin^2\theta} d\theta = 2\int \csc\theta d\theta$	$\cot \theta d\theta = -2 \operatorname{cosec} \theta (+c)$	M1
	Obtains kcose		
	$\left[-2\csc\theta\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = -2\csc\frac{\pi}{3} + 2\csc\frac{\pi}{6}$	Uses changed limits correctly. Depends on all previous method marks .	d M1
	$=4-\frac{4}{3}\sqrt{3}$	Cao Allow these 2 marks if limits have been given in degrees	A1
			(6)
			Total 9

ALT	For B1 and final dM1A1 of (ii)	
	dM1: Reverse the substitution A1: Correct reversed result	
	A1: enter as B1 on e-PEN Correct final answer	

Question Number	Scheme	Notes	Marks
3(a)	3	Correct value seen in (a)	B1
			(1)
(b)	$\begin{pmatrix} -2 & 5 & 0 \\ 5 & 1 & -3 \\ 0 & -3 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 8x \\ 8y \\ 8z \end{pmatrix} \Rightarrow 5x$ Correct method for the (making a variable equal to 0 is	e eigenvector	M1
	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} $	Any correct eigenvector	A1
		·	(2)
(c)	$ \mathbf{M} - \lambda \mathbf{I} = \begin{vmatrix} -2 - \lambda & 5 \\ 5 & 1 - \\ 0 & -3 \end{vmatrix}$ $\Rightarrow (-2 - \lambda) \left[(1 - \lambda)(6 - \lambda) - 9 \right] - 5$ NB CE is $\lambda^3 - 5\lambda^2 - 42\lambda + 144 = 0$ but r	$5[5(6-\lambda)]=0 \Rightarrow \lambda = \dots$	M1
	$\lambda = -6$	Correct third eigenvalue The work for these 2 marks may be seen in (a) – award them Correct third eigenvalue by a different method – send to review	A1
	$\mathbf{D} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & -6 \end{pmatrix}$	Correct D following through their third eigenvalue	A1ft
	$\begin{pmatrix} -2 & 5 & 0 \\ 5 & 1 & -3 \\ 0 & -3 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -6x \\ -6y \\ -6z \end{pmatrix} \Rightarrow 5x + y$ $Correct strategy for 3^{r}$		M1
	$\mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{14}} & -\frac{5}{\sqrt{42}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{14}} & \frac{4}{\sqrt{42}} \\ \frac{1}{\sqrt{3}} & -\frac{3}{\sqrt{14}} & \frac{1}{\sqrt{42}} \end{pmatrix}$	Fully correct matrix consistent with their \mathbf{D} May have $\frac{\sqrt{3}}{3}$ etc	A1
			(5) Total 8
			100010

Question Number	Scheme	Notes	Ma	rks
4.	$y = \operatorname{artanh}\left(\frac{\cos x + a}{\cos x - a}\right)$			
	$\frac{dy}{dx} = \frac{1}{1 - \left(\frac{\cos x + a}{\cos x - a}\right)^2} \times \frac{(\cos x - a) \times -\sin x - (\cos x + a) \times -\sin x}{(\cos x - a)^2}$ or $\frac{dy}{dx} = \frac{1}{1 - \left(\frac{\cos x + a}{\cos x - a}\right)^2} \times \left(-\sin x \times (\cos x - a)^{-1} + (\cos x + a) \times \sin x (\cos x - a)^{-2}\right)$ $\frac{M1: \text{ Correct method for the derivative.}}{1 - \left(\frac{\cos x + a}{\cos x - a}\right)^2} \times \text{ An attempt at the quotient (or product) rule.}$ $\frac{1}{1 - \left(\frac{\cos x + a}{\cos x - a}\right)^2}$ $\frac{A1: \text{ Correct derivative in any form}}{1 - \left(\frac{\cos x + a}{\cos x - a}\right)^2}$			
	$= \frac{\left(\cos x - a\right)^{2}}{\left(\cos x - a\right)^{2} - \left(\cos x + a\right)^{2}} \times \frac{2a\sin x}{\left(\cos x - a\right)^{2}} = \frac{2a\sin x}{-4a\cos x} = \dots$ Uses correct processing to reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$ Depends on the first method mark.		dM1	
	$=-\frac{1}{2}\tan x$	cso	A1	(4)
Way 2	$y = \operatorname{artanh}\left(\frac{\cos x + a}{\cos x - a}\right) \Rightarrow \tanh y = \frac{\cos x}{\cos x}$ Takes tanh of both sides, obtains $\operatorname{sech}^2 y \frac{\mathrm{d}y}{\mathrm{d}x}$	= an attempt at the quotient or product rule	M1	
	$\frac{dy}{dx} = \frac{1}{1 - \left(\frac{\cos x + a}{\cos x - a}\right)}$ Correct derivative)	A1	
	$= \frac{\left(\cos x - a\right)^{2}}{\left(\cos x - a\right)^{2} - \left(\cos x + a\right)^{2}} \times \frac{2a\sin x}{\left(\cos x - a\right)^{2}} = \frac{2a\sin x}{-4a\cos x} = \dots$ Uses correct processing to reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$ Depends on the first method mark.			
	1,	eso	A1	(4)

Way 3	Uses substitution $u = \frac{\cos x + a}{\cos x - a}$, obtains $\frac{du}{dx} \left(= \frac{2a \sin x}{(\cos x - a)^2} \right)$ by quotient rule and $\frac{dy}{du} \left(= \frac{1}{1 - u^2} \right)$ followed by chain rule to obtain $\frac{dy}{dx} = \frac{1}{1 - \left(\frac{\cos x + a}{\cos x - a}\right)^2} \times \frac{2a \sin x}{(\cos x - a)^2}$ Correct derivative in any form		M1
	Uses correct processing to	$\frac{\sin x}{\cos x} \text{ or } \lambda \tan x$	dM1
	Depends on the fi $=-\frac{1}{2}\tan x$	cso	A1 (4)
			Total 4
Way 4	$y = \frac{1}{2} \ln \left(\frac{1 + \frac{\cos x + a}{\cos x - a}}{1 - \frac{\cos x + a}{\cos x + a}} \right) = \frac{1}{2} \ln \left(-\frac{\cos x}{a} \right)$		
	$\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{-\frac{\cos x}{a}} \times \left(\frac{\sin x}{a}\right)$	M1: Converts to correct ln form and uses chain rule to differentiate A1: Correct derivative in any form	M1A1
	$\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{-\frac{\cos x}{a}} \times \left(\frac{\sin x}{a}\right)$ Uses correct processing to	chain rule to differentiate A1: Correct derivative in any form or reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$	M1A1
	$\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{-\frac{\cos x}{a}} \times \left(\frac{\sin x}{a}\right)$ Uses correct processing to	chain rule to differentiate A1: Correct derivative in any form or reach $\lambda \frac{\sin x}{2}$ or $\lambda \tan x$	
	$\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{-\frac{\cos x}{a}} \times \left(\frac{\sin x}{a}\right)$ Uses correct processing to	chain rule to differentiate A1: Correct derivative in any form or reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$	

Question Number	Scheme	Notes	Marks
5	$x = 4e^{\frac{1}{2}t}, y = e^t - t \qquad 0 \leqslant t \leqslant 4$		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2\mathrm{e}^{\frac{1}{2}t}, \frac{\mathrm{d}y}{\mathrm{d}t} = \mathrm{e}^t - 1$	Correct derivatives	B1
	NB: Allow missing dt in the following in	tegration work	
	$S = (2\pi) \int y \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \left(\mathrm{d}t\right) = (2\pi) \int \left(e^t - t\right) \sqrt{\left(4e^{\frac{1}{2}t}\right)^2 + \left(e^t - t\right)^2} \left(\mathrm{d}t\right)$		
	$\left(=(2\pi)\int (e^t-t)\sqrt{4e^t+e^{2t}-2e^t+1}\right)$	$\mathrm{d}t) igg)$	M1
		Formula with or w/o the 2π	
	$= (2\pi) \int (e^t - t)(e^t + 1)(dt)$	Correct simplified integral Brackets must be present unless implied by subsequent work but award by implication if	A1
		$(2\pi)\int (e^{2t} + e^t - te^t - t)(dt) \text{ is seen}$	
	$= (2\pi) \int (e^{t} - t)(e^{t} + 1)(dt) = (2\pi) \int (e^{2t} + e^{t} - te^{t} - t)(dt)$ $= (2\pi) \left[\frac{1}{2} e^{2t} + e^{t} - te^{t} + e^{t} - \frac{1}{2} t^{2} \right]$		
			D 111
	B1: For $\int te^{t} dt$	$dt = te^t - e^t \left(+c \right)$	B1A1
		rect integration	
		parate parts and score B1A1 if both parts (rect)	
	$= 2\pi \left[\frac{1}{2} e^{2t} + 2e^{t} - te^{t} - \frac{1}{2} t^{2} \right]_{0}^{4} = 2\pi \left\{ \left(\frac{1}{2} e^{8} + 2e^{4} - 4e^{4} - 8 \right) - \left(\frac{1}{2} + 2 \right) \right\}$ Applies the limits 0 and 4 Must include 2π now. If 2 integrals have been used limits must be applied to both and the results added Depends on the first M mark (and some valid integration)		
			dM1
	π (e ⁸ - 4e ⁴ - 21)	Cao	A1
	n (c +c 21)	Cao	(7)
			Total 7

Question Number	Scheme	Notes	Marks
6(a)	$\mathbf{A} = \begin{pmatrix} x \\ 2 \\ -4 \end{pmatrix}$	$ \begin{array}{ccc} 1 & 3 \\ 4 & x \\ -2 & -1 \end{array} $	
	NB: Work for (a) can o	nly be awarded in (a)	
	$ \mathbf{A} = x(-4+2x)-(-2+4x)+3(-4+16)$	Correct determinant attempt (expand by any row or column) or use the Rule of Sarrus (send to review if unsure) Sign errors allowed only within the brackets	M1
	$=2x^2-8x+38$	Correct simplified determinant	A1
	$2x^{2} - 8x + 38 = 2(x - 2)^{2} + 30$ or $\frac{d}{dx}(2x^{2} - 8x + 38) = 4x - 8 = 0 \Rightarrow x = 2$ $\Rightarrow 2x^{2} - 8x + 38 = \dots$ or $b^{2} - 4ac = 64 - 4 \times 2 \times 38 = \dots$	Starts the process of showing det $\mathbf{A} \neq 0$ E.g. Completes the square, finds the minimum point or finds discriminant May find discriminant of $x^2 - 4x + 19 = \dots$	M1
	$2x^{2}-8x+38 \geqslant 30$ or $b^{2}-4ac < 0$ Therefore det $\mathbf{A} \neq 0$ which means \mathbf{A} is non-singular	Appropriate reasoning for their chosen method and a conclusion stating that A is non-singular. All 3 previous marks needed (No need to evaluate a discriminant, so ISW slips in calculation provided $64-4\times2\times38=$ or $16-4\times19=$ seen	Alcso
(7.)			(4)
(b)	$\begin{pmatrix} x & 1 & 3 \\ 2 & 4 & x \\ -4 & -2 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} -4+2x & -2+4x &$	each at least a matrix of cofactors rect columns needed	M1A1
	$\begin{pmatrix} -4+2x & 2-4x & 12 \\ -5 & -x+12 & 2x-4 \\ x-12 & -x^2+6 & 4x-2 \end{pmatrix} \rightarrow \begin{pmatrix} A^{-1} = \frac{1}{2x^2 - 8x + 38} \begin{pmatrix} -4+2x \\ 2-4x \\ 12 \end{pmatrix}$ $dM1: \text{ Transposes and divide}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	dM1A1

If their original determinant has been divided by 2 (acceptable for (a)) and then used		
here it is not their determinant and so scores dM0		
2 correct rows or 2 correct columns needed from their previous matrix		
Depends on previous method mark.		
A1: Correct	et matrix	
		(4)
		Total 8

Question Number	Scheme	Notes	Marks	
7.	$I_n = \int \frac{x^n}{\sqrt{10 - x^2}} \mathrm{d}x \qquad n \in \mathbb{N}, \ x < \sqrt{10}$			
(a)	$I_n = \int \frac{x^n}{\sqrt{10 - x^2}} dx = \int \frac{x^{n-1} \times x}{\sqrt{10 - x^2}} dx$	Writes x^n as $x \times x^{n-1}$	M1	
	$\int \frac{x^{n-1} \times x}{\sqrt{10 - x^2}} \mathrm{d}x = -x^{n-1} \left(10 - x^2\right)^{\frac{1}{2}}$	$+(n-1)\int x^{n-2} (10-x^2)^{\frac{1}{2}} dx$		
	dM1: Uses integration by parts to obtain $\int \frac{x^{n-1} \times x}{\sqrt{10 - x^2}} dx = \alpha x^{n-1} \left(10 - x^2\right)^{\frac{1}{2}} + \beta \int x^{n-2} \left(10 - x^2\right)^{\frac{1}{2}} dx$			
	A1: Correct e	expression		
	$= \dots + (n-1) \int x^{n-2} \left(10\right)$	$-x^2$) $(10-x^2)^{-\frac{1}{2}}$ dx		
	$= + 10(n-1) \int x^{n-2} (10 - x^2)^{-\frac{1}{2}}$	$dx - (n-1) \int x^n (10 - x^2)^{-\frac{1}{2}} dx$	d M1	
	Applies $(10-x^2)^{\frac{1}{2}} = (10-x^2)(10-x^2)$	$(-x^2)^{-\frac{1}{2}}$ and splits into 2 integrals		
	$= \dots + 10(n-1)I_{n-2} - (n-1)I_n \Rightarrow nI_n$	Introduces I_{n-2} and I_n and makes progress to the given result	dM1	
	$nI_n = 10(n-1)I_{n-2}$	$-x^{n-1}(10-x^2)^{\frac{1}{2}}*$	A1*	
	Fully correct proof with no errors (recovery of missing brackets counts as an error) as does missing dx			
			(6)	
(b)	$I_1 = \int_0^1 \frac{x}{\sqrt{10 - x^2}} \mathrm{d}x = \left[-\left(1 \right) \right]$	$(0-x^2)^{\frac{1}{2}} \bigg]_0^1 \Big(= -3 + \sqrt{10} \Big)$	M1	
	Correct method for <i>I</i> ₁ Limit			
		Applies the reduction formula at least once Allow with 3 or $\left[-x^4 \left(10 - x^2\right)^{\frac{1}{2}}\right]_0^1$	M1	
	$I_5 = 8I_3 - \frac{3}{5} = 8\left(\frac{20}{3}I_1 - \frac{3}{3}I_1\right)$			
	$I_5 = \frac{160}{3} \left(\sqrt{10} \right)$	$(5-3)-\frac{43}{5}$	M1	
	Completes the process using their I_1 to obtain a numerical value for I_5 Limits must now be substituted			
	$=\frac{1}{15}\Big(800\sqrt{10}-2529\Big)$	Cao	A1	
			(4)	
			Total 10	

Question Number	Scheme	Notes	Marks
8(a)	(4) (2)		
0(a)	$ (\mathbf{r} =) \begin{pmatrix} -4 \\ -5 \\ 3 \end{pmatrix} + t \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix} $	Forms the parametric form of the line	M1
	3(3t-4)+4(4t-5)-(3-t)=17 $\Rightarrow t=(2)$	Substitutes the parametric form for the line into the plane equation and solves for "t". Depends on the first mark.	dM1
	$\begin{pmatrix} -4 \\ -5 \\ 3 \end{pmatrix} + "2" \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix}$	Uses their value of t correctly to find Q . Depends on the previous mark.	dM1
	(2, 3, 1)	Correct coordinates Accept if written as a column vector but not with i , j , k	A1 (4)
Way 2	$\frac{x+4}{3} = \frac{y+5}{4} = \frac{z-3}{-1}$ eg $x = f(y)$ $z = g(y)$	Forms the Cartesian equation of the line, rearranges twice to get 2 of x, y, z as functions of the third	M1
		Substitutes these into the plane equation and solves for one coordinate	dM1
		Obtains the other 2 coordinates	dM1
	(2, 3, 1)	Correct coordinates Accept if written as a column vector but not with i , j , k	A1
			(4)
(b)	$\mathbf{PQ} = \begin{pmatrix} 2+4 \\ 3+5 \\ 1-3 \end{pmatrix}, \mathbf{PR} = \begin{pmatrix} -1+4 \\ 6+5 \\ 4-3 \end{pmatrix}, \mathbf{RQ} = \begin{pmatrix} 2+1 \\ 3-6 \\ 1-4 \end{pmatrix}$	Attempts 2 vectors in plane <i>PQR</i> (Must use the given coordinates of <i>P</i> , <i>R</i> and their coordinates of <i>Q</i>	M1
	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 8 & -2 \\ 3 & 11 & 1 \end{vmatrix} = \begin{pmatrix} 30 \\ -12 \\ 42 \end{pmatrix}$	Attempt vector product between 2 vectors in <i>PQR</i> . Depends on the first mark.	dM1
	$\begin{pmatrix} 5 \\ -2 \\ 7 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = 11$	Uses any of P , Q or R to find constant. Depends on the previous mark.	dM1
	5x - 2y + 7z = 11	Any correct Cartesian equation	A1
			(4)
Way 2	-4a-5b-3c=1 $2a+3b+c=1$ $-a+6b+4c=1$	Uses the Cartesian form of the equation of a plane, $ax+by+cz=1$, and substitutes the coordinates of each of the 3 points	M1
	Solves to get a value for any of a, b or c		dM1
	Obtains values for the other 2		dM1
	$\frac{5}{11}x - \frac{2}{11}y + \frac{7}{11}z = 1$	Any correct Cartesian equation	A1

(c)	Reflection of P in Π is $ \begin{pmatrix} -4 \\ -5 \\ 3 \end{pmatrix} + 2 \times "2" \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix} \begin{pmatrix} 8 \\ 11 \\ -1 \end{pmatrix} $	Correct strategy for another point on l_3	M1
	$\begin{pmatrix} 8 \\ 11 \\ -1 \end{pmatrix} - \begin{pmatrix} -1 \\ 6 \\ 4 \end{pmatrix} \begin{pmatrix} = \begin{pmatrix} 9 \\ 5 \\ -5 \end{pmatrix} \end{pmatrix}$	Attempts direction of l_3 . Depends on the first mark.	dM1
	$\mathbf{r} = \begin{pmatrix} -1 \\ 6 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 9 \\ 5 \\ -5 \end{pmatrix}$	Forms the equation of l_3 using R (or their reflected P) and their direction. Depends on the previous mark.	ddM1
	(4) (-5)	Any correct equation in vector form	A1 (4)
			Total 12

Question Number	Scheme	Notes	Marks
9	$\frac{x^2}{9} + \frac{y^2}{4} = 1$	1, y = kx - 3	
(a)	$\frac{x^2}{9} + \frac{\left(kx - 3\right)^2}{4} = 1 \left(\text{or } \frac{x^2}{9} + \frac{k^2 x^2 - 6kx + 9}{4} = 1\right) \Rightarrow 4x^2 + 9\left(k^2 x^2 - 6kx + 9\right) = 36$ Substitutes to obtain a quadratic in x and eliminates fractions		M1
-	$(9k^2 + 4)x^2 - 54kx + 45 = 0*$	Correct proof with no errors	A1*
(b)	$x = \frac{1}{2} \left(\frac{9k^2 + 4}{9k^2 + 4} \right) = \frac{1}{9k^2 + 4}$ $OR x = \frac{54k \pm \sqrt{\text{discriminant}}}{2(9k^2 + 4)}$	Uses $\frac{1}{2}$ sum of roots for the x coordinate OR Solve the equation (by formula), add the 2 roots and halve the result. Must reach x_m . Allow errors in the discriminant	(2) M1
	$y = \frac{27k^2 - 27k^2 - 12}{9k^2 + 4} = -\frac{12}{9k^2 + 4}$	Uses the straight line equation to find y as a single fraction, can be unsimplified Depends on first M mark of (b)	dM1
	$x = \frac{27k}{9k^2 + 4}, y = -\frac{12}{9k^2 + 4}$	Fully correct work	A1
-			(3)
(c)	$x^{2} = \frac{729k^{2}}{(9k^{2} + 4)^{2}} \Rightarrow x^{2} + py^{2} = \frac{729k^{2} + 144p}{(9k^{2} + 4)^{2}}$ Obtains an expression for $x^{2} + py^{2}$ using their coordinates obtained in (b) and obtains a common denominator		
	$\frac{729k^2 + 144p}{\left(9k^2 + 4\right)^2} = -\frac{12q}{\left(9k^2 + 4\right)} \Rightarrow 729k^2 + 144p = -12q\left(9k^2 + 4\right)$ $729k^2 + 144p = 81\left(9k^2 + \frac{16}{9}p\right)$ $\Rightarrow \frac{16}{9}p = 4 \Rightarrow p = \dots$ Correct strategy to obtain a value for p or for q Depends on the first M mark of (c)		dM1
	$p = \frac{9}{4}$ or $q = -\frac{27}{4}$ oe	Correct value (or for q if found first)	A1
	$-12q = 81 \Rightarrow q = \dots$	Correct strategy to obtain a value for the second variable Depends on both previous M marks	ddM1
	$\Rightarrow x^2 + \frac{9}{4}y^2 = -\frac{27}{4}y$ $p = \frac{9}{4} \text{ and } q = -\frac{27}{4} \text{ oe}$	Both values correct – can be embedded in the equation	A1
			(5)

(c) Way 2	$x = \frac{27k}{9k^2 + 4}, y = -\frac{12}{9k^2 + 4}$ Obtains k in terms of x and y usin	<i>y</i> == -/y	M1
$k = -\frac{4x}{9y} \Rightarrow y = -\frac{12}{9\left(\frac{16x^2}{81y^2}\right) + 4} \text{ or } x = \frac{27\left(-\frac{4x}{9y}\right)}{9\left(\frac{16x^2}{81y^2}\right) + 4}$ $dM1: \text{Substitutes } k \text{ into } y \text{ or } x \text{ to obtain a Cartesian equation}$ $A1: \text{ Any correct Cartesian equation}$ $\text{Depends on the first M mark of (c)}$			dM1A1
	$\Rightarrow x^2 + \frac{9}{4}y^2 = -\frac{27}{4}y$	Rearranges to the form required Depends on both previous M marks of (c)	ddM1
	4 4 4	Correct equation or correct values stated	A1
			Total 10